Pataki, Diane E.; Alberti, Marina; Cadenasso, Mary L.; Felson, Alexander J.; McDonnell, Mark J.; Pincetl, Stephanie; Pouyat, Richard V.; Setala, Heikki; Whitlow, Thomas H. (2021). The Benefits and Limits of Urban Tree Planting for Environmental and Human Health. Frontiers In Ecology And Evolution, 9.
View Publication
Abstract
Many of the world's major cities have implemented tree planting programs based on assumed environmental and social benefits of urban forests. Recent studies have increasingly tested these assumptions and provide empirical evidence for the contributions of tree planting programs, as well as their feasibility and limits, for solving or mitigating urban environmental and social issues. We propose that current evidence supports local cooling, stormwater absorption, and health benefits of urban trees for local residents. However, the potential for urban trees to appreciably mitigate greenhouse gas emissions and air pollution over a wide array of sites and environmental conditions is limited. Consequently, urban trees appear to be more promising for climate and pollution adaptation strategies than mitigation strategies. In large part, this is due to space constraints limiting the extent of urban tree canopies relative to the current magnitude of emissions. The most promising environmental and health impacts of urban trees are those that can be realized with well-stewarded tree planting and localized design interventions at site to municipal scales. Tree planting at these scales has documented benefits on local climate and health, which can be maximized through targeted site design followed by monitoring, adaptive management, and studies of long-term eco-evolutionary dynamics.
Keywords
Outdoor Thermal Comfort; Improved Public-health; Carbon Storage; Ecosystem Services; Air-quality; Rainfall Interception; Vegetation; Cover; Design; Impact; Urban Ecology; Forestry; Sustainability; Policy; Climate Mitigation; Climate Adaptation; Ecosystem Disservices
ARPA-E announced $5 million in funding to two universities—the University of Washington and University of California, Davis—working to develop life cycle assessment tools and frameworks associated with transforming buildings into net carbon storage structures. The funding is part of the Harnessing Emissions into Structures Taking Inputs from the Atmosphere (HESTIA) Exploratory Topic. Parametric Open Data for Life Cycle Assessment (POD | LCA) – $3,744,303 The University of Washington’s Carbon Leadership Forum will develop a rigorous and flexible parametric Life Cycle Assessment (LCA)…
Assistant Professor, Department of Construction Management
Fred is an Assistant Professor with the Department of Construction Management (CM) at the University of Washington (UW). Prior to joining UW in September 2021, he was an Assistant Professor at Texas State University in San Marcos, TX where he taught and performed research in the areas of concrete materials, durability, and sustainable infrastructure construction. He received his PhD in Civil Engineering from the University of Texas at Austin in 2016.
Dr. Aguayo is interested in research application that contribute to facilitating the implementation of sustainable and novel cement-based systems in infrastructure and building applications such as alternative cement binders, supplementary cementing materials (SCMs), recycled aggregates, and high performing concretes. His research group focuses on evaluating and characterizing deterioration processes in new and existing cementitious materials, while also developing test methods to predict and enhance their performance and durability in the field. He primarily examines durability-related issues in cement-based materials such as corrosion, carbonation, ASR, sulfate attack, and early-age volume changes.
Dr. Aguayo is a well-established researcher with over 13 years of experience and over $1.2M in funded research projects as either PI or Co-PI since 2016. His work has been supported by both private industry and public agencies including LarfargeHolcim, Texas DOT, Minnesota DOT, New Mexico DOT, National Research Road Alliance (NRRA), and the Portland Cement Association (PCA). He is an active member of the American Concrete Institute and ASTM International, and participates in several committees related to concrete durability (ACI 201) and material science of cementitious systems (ACI 236).
My research interests are in lean construction principles with a focus on lean project delivery systems, offsite and prefabrication construction, construction supply chain networks, and target value design. In addition to that my interests include life cycle project economics and modeling, building economic and quantitative risk analysis, a public-private partnership for projects, value engineering and management, and new technologies in construction.
My research interests focus on the contemporary problems of integrated architecture, engineering, and construction practices, particularly the communication processes and team workflows that support them. This work is at the intersection of AEC and the sociological and organizational theories that help identify and analyze the activities within professional practice collaboration. I am using qualitative studies to build theory and practice models for Lean Construction, sustainable design and construction, and integration across design, construction, and facility management. I am also working with technological constructs like BIM and COBie that form foundations for new kinds of collaboration.
I am a licensed architect, and have been a long-time educator in architecture and construction. I have taught design and construction studios, building detailing and assemblages, and architectural theory, and have been recognized institutionally and nationally for teaching excellence. My instructional research is focused on studio-based learning and design thinking.
My personal research interests include emerging building technologies, such as BIM, and their integration into the field, augmented reality within construction, sustainability within the construction management industry, net-zero or net-positive energy buildings, and emerging building technologies as a whole. I am also interested in building energy performance for new construction and retrofits, decarbonization of buildings, passive sustainable design for buildings, and building to grid optimization.
I am interested in sustainable buildings with an emphasis on energy efficiency, health requirements, indoor air quality, incentives, and green financing. This interest is shaped by the emerging trend towards healthy buildings that improve the occupants’ productivity and health. My research agenda focuses on reconceptualizing sustainable building’s performance to meet the building’s health requirements and energy-efficiency and promote this in policy decision-making settings, including improving the risk responsiveness of codes and standards for building practices.
Julie Kriegh, researcher with the Carbon Leadership Forum and other CBE research centers, and owner of Kriegh Architecture Studios, collaborated with other CBE faculty and external partners to lead a UW CBE studio course in collaboration with Google that developed and delivered a design proposal for a sustainable data center. CBE collaborators included Hyun Woo “Chris” Lee, P.D. Koon Professorship in Construction Management; Jan Whittington, Associate Professor of the Department of Urban Design and Planning, and Director of the Urban…
On February 9, Lever for Change announced that the College of Built Environment’s Carbon Leadership Forum (CLF) and four other finalist teams will advance to the next stage of the 2030 Climate Challenge, a $10 million award launched last year to reduce greenhouse gas emissions in the U.S. by 2030. The Challenge, sponsored by an anonymous donor, will fund proven, data-driven solutions tackling greenhouse gas emissions in the buildings, industry, and/or transportation sectors in communities across the country. Sixty-eight proposals…
Understanding how communities plan and adopt green solutions including technologies that are sustainable and fit in the framework of green neighborhood development