Skip to content

Walking Objectively Measured: Classifying Accelerometer Data with GPS and Travel Diaries

Kang, Bumjoon; Moudon, Anne V.; Hurvitz, Philip M.; Reichley, Lucas; Saelens, Brian E. (2013). Walking Objectively Measured: Classifying Accelerometer Data with GPS and Travel Diaries. Medicine & Science In Sports & Exercise, 45(7), 1419 – 1428.

View Publication

Abstract

Purpose: This study developed and tested an algorithm to classify accelerometer data as walking or nonwalking using either GPS or travel diary data within a large sample of adults under free-living conditions. Methods: Participants wore an accelerometer and a GPS unit and concurrently completed a travel diary for seven consecutive days. Physical activity (PA) bouts were identified using accelerometry count sequences. PA bouts were then classified as walking or nonwalking based on a decision-tree algorithm consisting of seven classification scenarios. Algorithm reliability was examined relative to two independent analysts' classification of a 100-bout verification sample. The algorithm was then applied to the entire set of PA bouts. Results: The 706 participants' (mean age = 51 yr, 62% female, 80% non-Hispanic white, 70% college graduate or higher) yielded 4702 person-days of data and had a total of 13,971 PA bouts. The algorithm showed a mean agreement of 95% with the independent analysts. It classified PA into 8170 walking bouts (58.5 %) and 5337 nonwalking bouts (38.2%); 464 bouts (3.3%) were not classified for lack of GPS and diary data. Nearly 70% of the walking bouts and 68% of the nonwalking bouts were classified using only the objective accelerometer and GPS data. Travel diary data helped classify 30% of all bouts with no GPS data. The mean + SD duration of PA bouts classified as walking was 15.2 + 12.9 min. On average, participants had 1.7 walking bouts and 25.4 total walking minutes per day. Conclusions: GPS and travel diary information can be helpful in classifying most accelerometer-derived PA bouts into walking or nonwalking behavior.

Keywords

Walking; Algorithms; Decision Trees; Geographic Information Systems; Research Funding; Travel; Accelerometry; Diary (literary Form); Descriptive Statistics; Algorithm; Classification; Physical Activity; Walk Trip; Global Positioning Systems; Physical-activity; Environment; Behaviors; Validity; Location

Split-Match-Aggregate (SMA) Algorithm: Integrating Sidewalk Data with Transportation Network Data in GIS

Kang, Bumjoon; Scully, Jason Y.; Stewart, Orion; Hurvitz, Philip M.; Moudon, Anne V. (2015). Split-Match-Aggregate (SMA) Algorithm: Integrating Sidewalk Data with Transportation Network Data in GIS. International Journal Of Geographical Information Science, 29(3), 440 – 453.

View Publication

Abstract

Sidewalk geodata are essential to understand walking behavior. However, such geodata are scarce, only available at the local jurisdiction and not at the regional level. If they exist, the data are stored in geometric representational formats without network characteristics such as sidewalk connectivity and completeness. This article presents the Split-Match-Aggregate (SMA) algorithm, which automatically conflates sidewalk information from secondary geometric sidewalk data to existing street network data. The algorithm uses three parameters to determine geometric relationships between sidewalk and street segments: the distance between streets and sidewalk segments; the angle between sidewalk and street segments; and the difference between the lengths of matched sidewalk and street segments. The SMA algorithm was applied in urban King County, WA, to 13 jurisdictions' secondary sidewalk geodata. Parameter values were determined based on agreement rates between results obtained from 72 pre-specified parameter combinations and those of a trained geographic information systems (GIS) analyst using a randomly selected 5% of the 79,928 street segments as a parameter-development sample. The algorithm performed best when the distances between sidewalk and street segments were 12m or less, their angles were 25 degrees or less, and the tolerance was set to 18m, showing an excellent agreement rate of 96.5%. The SMA algorithm was applied to classify sidewalks in the entire study area and it successfully updated sidewalk coverage information on the existing regional-level street network data. The algorithm can be applied for conflating attributes between associated, but geometrically misaligned line data sets in GIS.

Keywords

Geodatabases; Sidewalks; Algorithms; Pedestrians; Digital Mapping; Algorithm; Gis; Pedestrian Network Data; Polyline Conflation; Sidewalk; Built Environment; Physical-activity; Mode Choice; Urban Form; Land-use; Travel; Generation; Walking

Physiological Cost Of Concrete Construction Activities

Lee, Wonil; Migliaccio, Giovanni Ciro. (2016). Physiological Cost Of Concrete Construction Activities. Construction Innovation, 16(3), 281 – 306.

View Publication

Abstract

Purpose - The purpose of this paper was to investigate the physiological cost of concrete construction activities. Design/methodology/approach - Five concrete construction workers were recruited. The workers' three-week heart rate (HR) data were collected in summer and autumn. In this paper, several HR indexes were used to investigate the physiological cost of work in concrete construction trades, including average working HR, relative HR and ratio of working HR to resting HR. Findings - This paper measures how absolute and relative HRs vary throughout a workday and how working HR compares to resting HR for individual workers. Research limitations/implications - Field observations are usually extremely difficult as researchers need to overcome a number of barriers, including employers' resistance to perceived additional liabilities, employees' fear that their level of activity will be reported to managers and many other practical and technical difficulties. As these challenges increase exponentially with the number of employers, subjects and sites, this study was limited to a small number of subjects all working for the same employer on the same jobsite. Still, challenges are often unpredictable and lessons learned from this study are expected to guide both our and other researchers' continuation of this work. Originality/value - The time effect on the physiological cost of work has not been considered in previous studies. Thus, this study is noteworthy owing to the depth of the data collected rather than the breadth of the data.

Keywords

Concrete; Construction Industry; Costing; Human Resource Management; Occupational Health; Personnel; Physiology; Physiological Cost; Concrete Construction Activity; Construction Workers; Summer; Autumn; Construction Trade; Working Heart Rate; Relative Heart Rate; Resting Heart Rate; Employee Fear; Jobsite; Heart-rate Strain; Stress; Work; Risk; Management; Fusion; Model; Index; Biosensing And Environmental Sensing; Occupational Safety And Health; Threshold Limit Value; Work Physiology

What Determines Rail Transit Passenger Volume? Implications for Transit Oriented Development Planning

Pan, Haixiao; Li, Jing; Shen, Qing; Shi, Cheng. (2017). What Determines Rail Transit Passenger Volume? Implications for Transit Oriented Development Planning. Transportation Research: Part D, 57, 52 – 63.

View Publication

Abstract

Transit oriented development (TOD) has been an important topic for urban transportation planning research and practice. This paper is aimed at empirically examining the effect of rail transit station-based TOD on daily station passenger volume. Using integrated circuit (IC) card data on metro passenger volumes and cellular signaling data on the spatial distribution of human activities in Shanghai, the research identifies variations in ridership among rail transit stations. Then, regression analysis is performed using passenger volume in each station as the dependent variable. Explanatory variables include station area employment and population, residents' commuting distances, metro network accessibility, status as interchange station, and coupling with commercial activity centers. The main findings are: (1) Passenger volume is positively associated with employment density and residents' commuting distance around station; (2) stations with earlier opening dates and serving as transfer nodes tend to have positive association with passenger volumes; (3) metro stations better integrated with nearby commercial development tend to have larger passenger volumes. Several implications are drawn for TOD planning: (1) TOD planning should be integrated with rail transit network planning; (2) location of metro stations should be coupled with commercial development; (3) high employment densities should be especially encouraged as a key TOD feature; and (4) interchange stations should be more strategically positioned in the planning for rail transit network.

Keywords

Railroad Passenger Traffic; Transportation; Public Transit; Volume Measurements; Smart Cards; Mathematical Models; Accessibility; Density; Rail Transit Passenger Volume; Spatial Coupling Effect; Tod; Land-use; Built Environment; Travel-demand; Mode Choice; Impacts; Distance

Intersections and Non-Intersections: A Protocol for Identifying Pedestrian Crash Risk Locations in GIS

Kang, Mingyu; Moudon, Anne Vernez; Kim, Haena; Boyle, Linda Ng. (2019). Intersections and Non-Intersections: A Protocol for Identifying Pedestrian Crash Risk Locations in GIS. International Journal Of Environmental Research And Public Health, 16(19).

View Publication

Abstract

Intersection and non-intersection locations are commonly used as spatial units of analysis for modeling pedestrian crashes. While both location types have been previously studied, comparing results is difficult given the different data and methods used to identify crash-risk locations. In this study, a systematic and replicable protocol was developed in GIS (Geographic Information System) to create a consistent spatial unit of analysis for use in pedestrian crash modelling. Four publicly accessible datasets were used to identify unique intersection and non-intersection locations: Roadway intersection points, roadway lanes, legal speed limits, and pedestrian crash records. Two algorithms were developed and tested using five search radii (ranging from 20 to 100 m) to assess the protocol reliability. The algorithms, which were designed to identify crash-risk locations at intersection and non-intersection areas detected 87.2% of the pedestrian crash locations (r: 20 m). Agreement rates between algorithm results and the crash data were 94.1% for intersection and 98.0% for non-intersection locations, respectively. The buffer size of 20 m generally showed the highest performance in the analyses. The present protocol offered an efficient and reliable method to create spatial analysis units for pedestrian crash modeling. It provided researchers a cost-effective method to identify unique intersection and non-intersection locations. Additional search radii should be tested in future studies to refine the capture of crash-risk locations.

Keywords

Traffic Crash; Walking; Collisions; Accidents; Models; Pedestrian Safety; Spatial Autocorrelation; Algorithm

Motorcycle Taxi Programme Increases Safe Riding Behaviours Among Its Drivers In Kampala, Uganda

Muni, Kennedy; Kobusingye, Olive; Mock, Charles; Hughes, James P.; Hurvitz, Philip M.; Guthrie, Brandon. (2020). Motorcycle Taxi Programme Increases Safe Riding Behaviours Among Its Drivers In Kampala, Uganda. Injury Prevention, 26(1), 5 – 11.

View Publication

Abstract

Background SafeBoda is a motorcycle taxi company that provides road safety training and helmets to its drivers in Kampala, Uganda. We sought to determine whether SafeBoda drivers are more likely to engage in safe riding behaviours than regular drivers (motorcycle taxi drivers not part of SafeBoda). Methods We measured riding behaviours in SafeBoda and regular drivers through: (1) computer-assisted personal interview (CAPI), where 400 drivers were asked about their riding behaviours (eg, helmet and mobile phone use) and (2) roadside observation, where riding behaviours were observed in 3000 boda-boda drivers and their passengers along major roads in Kampala. Results Across the two cross-sectional studies, a higher proportion of SafeBoda drivers than regular drivers engaged in safe riding behaviours. For instance, helmet use among SafeBoda compared with regular drivers was 21% points higher (95% CI 0.15 to 0.27; p<0.001) based on the CAPI and 45% points higher (95% CI 0.43 to 0.47; p<0.001) based on roadside observation. Furthermore, compared with regular drivers, SafeBoda drivers were more likely to report having a driver's license (66.3% vs 33.5 %; p<0.001) and a reflective jacket (99.5% vs 50.5 %; p<0.001) and were less likely to report driving towards oncoming traffic (4% vs 45.7 %; p<0.001) in the past 30 days. Conclusion The SafeBoda programme is associated with increased safe riding behaviours among motorcycle taxi drivers in Kampala. Therefore, the promotion and expansion of such programmes may lead to a reduction in morbidity and mortality due to road injuries.

Keywords

Multiple-imputation; Helmet Use; Knowledge; Injuries; Riders

Accelerated Construction of Urban Intersections with Portland Cement Concrete Pavement (PCCP)

Nemati, Kamran M.; Uhlmeyer, Jeff S. (2021). Accelerated Construction of Urban Intersections with Portland Cement Concrete Pavement (PCCP). Case Studies In Construction Materials, 14.

View Publication

Abstract

The frequent maintenance required on asphalt concrete (AC) pavement sections has made reconstruction with portland cement concrete pavement (PCCP) a feasible alternative. However, many constructability issues need to be addressed in order to realize the full potential of this alternative. Accelerated paving encompasses three classes of activities: methods to accelerate the rate of strength gain, methods to minimize the construction time, and traffic control strategies to minimize user delay. In this paper a case study will be presented in which an AC intersection was reconstructed with portland cement concrete pavement. The entire reconstruction of the intersection, including demolition of the AC pavement and its replacement with PCCP, took place over a period of three days, starting on Thursday evening and opening the intersection to the traffic on Sunday afternoon. This paper documents this effort in order to provide practitioners additional options for rapid reconstruction of urban intersections and includes documentation of the construction process, traffic management strategies, and an analysis of the costs. The results of this investigation can be used to educate pavement construction professionals and the academic community on the use of PCCP for accelerated reconstruction of major urban intersections with minimal user and traffic disruption, using innovative construction techniques and traffic management optimization principles. This investigation produced valuable information to demonstrate that concrete pavements can be constructed efficiently and quickly. (C) 2021 The Authors. Published by Elsevier Ltd.

Keywords

Concrete; Accelerated Construction; Pavement; Portland Cement Concrete Pavement; Maturity Method

An Empirical Analysis of the Influence of Urban Form on Household Travel and Energy Consumption

Liu, Chao; Shen, Qing. (2011). An Empirical Analysis of the Influence of Urban Form on Household Travel and Energy Consumption. Computers, Environment & Urban Systems, 35(5), 347 – 357.

View Publication

Abstract

Using the 2001 National Household Travel Survey (NHTS) data, this paper empirically examines the effects of urban land use characteristics on household travel and transportation energy consumption in the Baltimore metropolitan area. The results of regression analysis show that different built environment measures lead to substantially different findings regarding the importance of urban form in influencing travel behavior. Among the built environment variables used in the analysis, accessibility provides much more explanatory power than density, design and diversity measures. Moreover, this study explores approaches to modeling the connection between urban form and household transportation energy consumption. Applying Structural Equation Models (SEMs), we found that urban form does not have a direct effect either on VMT or on vehicle energy consumption. The indirect effect, however, is significant and negative, which suggests that urban form affects household travel and energy consumption through other channels. In addition, household socio-economic characteristics, such as gender and number of vehicles, and vehicle characteristics also show significant relationships between VMT and energy consumption. This empirical effort helps us understand the major data and methodology challenges. (C) 2011 Elsevier Ltd. All rights reserved.

Keywords

Urban Planning; Households; Travel; Energy Consumption; Empirical Research; Transportation; Metropolitan Areas; Climate Change; National Household Travel Survey (nhts); Usage; Environment; Behavior; Holdings; Impact

Valuing the Reliability of the Electrical Power Infrastructure: A Two-Stage Hedonic Approach

Maliszewski, Paul; Larson, Elisabeth; Perrings, Charles. (2013). Valuing the Reliability of the Electrical Power Infrastructure: A Two-Stage Hedonic Approach. Urban Studies, 50(1), 72 – 87.

View Publication

Abstract

The reliability of electrical power supply is amongst the conditions that inform house purchase decisions in all urban areas. Reliability depends in part on the conditions of the power generation and distribution infrastructures involved, and in part on environmental conditions. Its value to homeowners may be capitalised into the value of the house. In this paper, a hedonic pricing approach is used to estimate the capitalised value of the reliability offered by distribution infrastructures and the environmental conditions with which they interact in Phoenix, Arizona. A first stage estimates the impact of infrastructure and environmental conditions on reliability. In a second stage, the capitalised value of reliability from the marginal willingness to pay for reliability revealed by house purchase decisions is estimated and used to infer the value of both infrastructural characteristics and environmental conditions.

Keywords

Willingness-to-pay; Residential Property-values; Economic Valuation; Choice Experiment; Urban Wetlands; Air-quality; Benefits; Identifiability; Specification; Determinants

Multilevel Models for Evaluating the Risk of Pedestrian-Motor Vehicle Collisions at Intersections and Mid-Blocks

Quistberg, D. Alex; Howard, Eric J.; Ebel, Beth E.; Moudon, Anne V.; Saelens, Brian E.; Hurvitz, Philip M.; Curtin, James E.; Rivara, Frederick P. (2015). Multilevel Models for Evaluating the Risk of Pedestrian-Motor Vehicle Collisions at Intersections and Mid-Blocks. Accident Analysis & Prevention, 84, 99 – 111.

View Publication

Abstract

Walking is a popular form of physical activity associated with clear health benefits. Promoting safe walking for pedestrians requires evaluating the risk of pedestrian motor vehicle collisions at specific roadway locations in order to identify where road improvements and other interventions may be needed. The objective of this analysis was to estimate the risk of pedestrian collisions at intersections and mid-blocks in Seattle, WA. The study used 2007-2013 pedestrian motor vehicle collision data from police reports and detailed characteristics of the microenvironment and macroenvironment at intersection and mid-block locations. The primary outcome was the number of pedestrian motor vehicle collisions over time at each location (incident rate ratio [IRR] and 95% confidence interval [95% CI]). Multilevel mixed effects Poisson models accounted for correlation within and between locations and census blocks over time. Analysis accounted for pedestrian and vehicle activity (e.g., residential density and road classification). In the final multivariable model, intersections with 4 segments or 5 or more segments had higher pedestrian collision rates compared to mid-blocks. Non-residential roads had significantly higher rates than residential roads, with principal arterials having the highest collision rate. The pedestrian collision rate was higher by 9% per 10 feet of street width. Locations with traffic signals had twice the collision rate of locations without a signal and those with marked crosswalks also had a higher rate. Locations with a marked crosswalk also had higher risk of collision. Locations with a one-way road or those with signs encouraging motorists to cede the right-of-way to pedestrians had fewer pedestrian collisions. Collision rates were higher in locations that encourage greater pedestrian activity (more bus use, more fast food restaurants, higher employment, residential, and population densities). Locations with higher intersection density had a lower rate of collisions as did those in areas with higher residential property values. The novel spatiotemporal approach used that integrates road/crossing characteristics with surrounding neighborhood characteristics should help city agencies better identify high-risk locations for further study and analysis. Improving roads and making them safer for pedestrians achieves the public health goals of reducing pedestrian collisions and promoting physical activity. (C) 2015 Elsevier Ltd. All rights reserved.

Keywords

Pedestrian Accidents; Road Interchanges & Intersections; Built Environment; Pedestrian Crosswalks; Correlation (statistics); Collision Risk; Multilevel Model; Pedestrians; Geographic Information-systems; Road-traffic Injuries; Physical-activity; Signalized Intersections; Impact Speed; Urban Form; Land-use; Safety; Walking