Kim, Taehoon; Kim, Yong-Woo; Cho, Hunhee. (2020). Dynamic Production Scheduling Model Under Due Date Uncertainty in Precast Concrete Construction. Journal Of Cleaner Production, 257.
View Publication
Abstract
Precast concrete structures (PCs) are widely used in the construction industry to reduce project delivery times and improve quality. On-time delivery of PCs is critical for successful project completion because the processes involving precast concrete are the critical paths in most cases. However, existing models for scheduling PC production are not adequate for use in dynamic environments where construction projects have uncertain construction schedules because of various reasons such as poor labor productivity, inadequate equipment, and poor weather. This research proposes a dynamic model for PC production scheduling by adopting a discrete-time simulation method to respond to due date changes in real time and by using a new dispatching rule that considers the uncertainty of the due dates to minimize tardiness. The model is validated by simulation experiments based on various scenarios with different levels of tightness and due date uncertainty. The results of this research will contribute to construction project productivity with a reliable and economic precast concrete supply chain. (C) 2020 Elsevier Ltd. All rights reserved.
Keywords
Multiple Production; Demand Variability; Supply Chain; Shop; Management; Minimize; Lines; Precast Concrete Production; Dynamic Simulation; Uncertainty; Production Scheduling; Dispatching Rule
Nemati, Kamran M.; Uhlmeyer, Jeff S. (2021). Accelerated Construction of Urban Intersections with Portland Cement Concrete Pavement (PCCP). Case Studies In Construction Materials, 14.
View Publication
Abstract
The frequent maintenance required on asphalt concrete (AC) pavement sections has made reconstruction with portland cement concrete pavement (PCCP) a feasible alternative. However, many constructability issues need to be addressed in order to realize the full potential of this alternative. Accelerated paving encompasses three classes of activities: methods to accelerate the rate of strength gain, methods to minimize the construction time, and traffic control strategies to minimize user delay. In this paper a case study will be presented in which an AC intersection was reconstructed with portland cement concrete pavement. The entire reconstruction of the intersection, including demolition of the AC pavement and its replacement with PCCP, took place over a period of three days, starting on Thursday evening and opening the intersection to the traffic on Sunday afternoon. This paper documents this effort in order to provide practitioners additional options for rapid reconstruction of urban intersections and includes documentation of the construction process, traffic management strategies, and an analysis of the costs. The results of this investigation can be used to educate pavement construction professionals and the academic community on the use of PCCP for accelerated reconstruction of major urban intersections with minimal user and traffic disruption, using innovative construction techniques and traffic management optimization principles. This investigation produced valuable information to demonstrate that concrete pavements can be constructed efficiently and quickly. (C) 2021 The Authors. Published by Elsevier Ltd.
Keywords
Concrete; Accelerated Construction; Pavement; Portland Cement Concrete Pavement; Maturity Method
Assistant Professor, Department of Construction Management
Fred is an Assistant Professor with the Department of Construction Management (CM) at the University of Washington (UW). Prior to joining UW in September 2021, he was an Assistant Professor at Texas State University in San Marcos, TX where he taught and performed research in the areas of concrete materials, durability, and sustainable infrastructure construction. He received his PhD in Civil Engineering from the University of Texas at Austin in 2016.
Dr. Aguayo is interested in research application that contribute to facilitating the implementation of sustainable and novel cement-based systems in infrastructure and building applications such as alternative cement binders, supplementary cementing materials (SCMs), recycled aggregates, and high performing concretes. His research group focuses on evaluating and characterizing deterioration processes in new and existing cementitious materials, while also developing test methods to predict and enhance their performance and durability in the field. He primarily examines durability-related issues in cement-based materials such as corrosion, carbonation, ASR, sulfate attack, and early-age volume changes.
Dr. Aguayo is a well-established researcher with over 13 years of experience and over $1.2M in funded research projects as either PI or Co-PI since 2016. His work has been supported by both private industry and public agencies including LarfargeHolcim, Texas DOT, Minnesota DOT, New Mexico DOT, National Research Road Alliance (NRRA), and the Portland Cement Association (PCA). He is an active member of the American Concrete Institute and ASTM International, and participates in several committees related to concrete durability (ACI 201) and material science of cementitious systems (ACI 236).
I am interested in research related to emerging technology in the AEC industry, and looking for opportunities to conduct experiment-based research whenever possible, particularly research related to virtual construction or construction safety. I have additional interests in public-private partnerships, lean construction, and project delivery.
My research interests focus on the contemporary problems of integrated architecture, engineering, and construction practices, particularly the communication processes and team workflows that support them. This work is at the intersection of AEC and the sociological and organizational theories that help identify and analyze the activities within professional practice collaboration. I am using qualitative studies to build theory and practice models for Lean Construction, sustainable design and construction, and integration across design, construction, and facility management. I am also working with technological constructs like BIM and COBie that form foundations for new kinds of collaboration.
I am a licensed architect, and have been a long-time educator in architecture and construction. I have taught design and construction studios, building detailing and assemblages, and architectural theory, and have been recognized institutionally and nationally for teaching excellence. My instructional research is focused on studio-based learning and design thinking.
I am interested in developing analysis methods and metrics for accurate daylight analysis. More concretely, I would like to work on developing color accurate sky models through analyzing HDR photographs, and to integrate it to annual daylight simulation method. Additionally, I am also interested in integration of daylight simulation in environmental design.
My personal research interests include emerging building technologies, such as BIM, and their integration into the field, augmented reality within construction, sustainability within the construction management industry, net-zero or net-positive energy buildings, and emerging building technologies as a whole. I am also interested in building energy performance for new construction and retrofits, decarbonization of buildings, passive sustainable design for buildings, and building to grid optimization.
The Cyber-BE Lab integrates the latest in academic research on policy, communication, and organization with industry expertise on IoT security, risk mitigation and building operations. Cyber-BE offers a holistic understanding of IoT in the built environment. We support the organizational, communication, and policy innovations that will help minimize IoT risk through:
- Advancing social scientific research to better understand and apply smart technology in the built environment
- Delivering usable guidance and tools to address the policy, organizational, and communication challenges that industry practitioners face
- Building a community of practice of IoT security practitioners and researchers
The lab leads include Laura Osburn, Senior Research Scientist at the Department of Construction Management, Jessica Beyer, Lecturer and Research Scientist at the Jackson School of International Studies, and Chuck Benson, Director of IoT Risk Mitigation Strategy at the University of Washington.
The Pacific Northwest Transportation Consortium (PacTrans) announced in January 2021 the project proposals selected for funding. Qing Shen, Professor of Urban Design and Planning and Chair of the Interdisciplinary PhD Program in Urban Design and Planning is among those selected for project funding. Shen is working alongside Co-Principal Investigator Catherine (Casey) Gifford–Innovative Mobility Senior Planner–on the applied research project titled “Supplementing fixed-route transit with dynamic shared mobility services: a marginal cost comparison approach”. The project goal is to address a…
Sensol Systems, a startup founded in 2020 by Janie Bube–a recent UW Masters of Landscape Architecture graduate–along with other students at University of Washington, was recently awarded a National Science Foundation (NSF) award to participate in the I-Corps program. This NSF program uses experiential education to help researchers gain valuable insight into entrepreneurship, starting a business or industry requirements and challenges. The curriculum integrates scientific inquiry and industrial discovery in an inclusive, data-driven culture driven by rigor, relevance, and evidence….