Skip to content

Analyzing Investments in Flood Protection Structures: A Real Options Approach

Gomez-Cunya, Luis-Angel; Fardhosseini, Mohammad Sadra; Lee, Hyun Woo; Choi, Kunhee. (2020). Analyzing Investments in Flood Protection Structures: A Real Options Approach. International Journal Of Disaster Risk Reduction, 43.

View Publication

Abstract

The soaring number of natural hazards in recent years due largely to climate change has resulted in an even higher level of investment in flood protection structures. However, such investments tend to be made in the aftermath of disasters. Very little is known about the proactive planning of flood protection investments that account for uncertainties associated with flooding events. Understanding the uncertainties such as when to invest on these structures to achieve the most optimal cost-saving amount is outmost important. This study fills this large knowledge gap by developing an investment decision-making assessment framework that determines an optimal timing of flood protection investment options. It combines real options with a net present value analysis to examine managerial flexibility in various investment timing options. Historical data that contain information about river water discharges were leveraged as a random variable in the modeling framework because it may help investors better understand the probability of extreme events, and particularly, flooding uncertainties. A lattice model was then used to investigate potential alternatives of investment timing and to evaluate the benefits of delaying investments in each case. The efficacy of the proposed framework was demonstrated by an illustrative example of flood protection investment. The framework will be used to help better inform decision makers.

Keywords

Decision-making; Flood Protection; Real Options Theory; Investment Decision-making

Minimization of Socioeconomic Disruption for Displaced Populations Following Disasters.

El-Anwar, Omar; El-Rayes, Khaled; Elnashai, Amr. (2010). Minimization of Socioeconomic Disruption for Displaced Populations Following Disasters. Disasters, 34(3), 865 – 883.

View Publication

Abstract

In the aftermath of catastrophic natural disasters such as hurricanes, tsunamis and earthquakes, emergency management agencies come under intense pressure to provide temporary housing to address the large-scale displacement of the vulnerable population. Temporary housing is essential to enable displaced families to reestablish their normal daily activities until permanent housing solutions can be provided. Temporary housing decisions, however, have often been criticized for their failure to fulfil the socioeconomic needs of the displaced families within acceptable budgets. This paper presents the development of (1) socioeconomic disruption metrics that are capable of quantifying the socioeconomic impacts of temporary housing decisions on displaced populations; and (2) a robust multi-objective optimization model for temporary housing that is capable of simultaneously minimizing socioeconomic disruptions and public expenditures in an effective and efficient manner. A large-scale application example is optimized to illustrate the use of the model and demonstrate its capabilities ingenerating optimal plans for realistic temporary housing problems.

Keywords

Natural Disasters; Hurricanes; Disaster Relief; Temporary Housing; Tsunamis; Multi-objective Optimization; Post-disaster Recovery; Social Welfare; Socioeconomic Disruption

Immediate Behavioural Responses To Earthquakes In Christchurch, New Zealand, And Hitachi, Japan.

Lindell, Michael K.; Prater, Carla S.; Wu, Hao Che; Huang, Shih-kai; Johnston, David M.; Becker, Julia S.; Shiroshita, Hideyuki. (2016). Immediate Behavioural Responses To Earthquakes In Christchurch, New Zealand, And Hitachi, Japan. Disasters, 40(1), 85 – 111.

View Publication

Abstract

This study examines people's immediate responses to earthquakes in Christchurch, New Zealand, and Hitachi, Japan. Data collected from 257 respondents in Christchurch and 332 respondents in Hitachi revealed notable similarities between the two cities in people's emotional reactions, risk perceptions, and immediate protective actions during the events. Respondents' physical, household, and social contexts were quite similar, but Hitachi residents reported somewhat higher levels of emotional reaction and risk perception than did Christchurch residents. Contrary to the recommendations of emergency officials, the most frequent response of residents in both cities was to freeze. Christchurch residents were more likely than Hitachi residents to drop to the ground and take cover, whereas Hitachi residents were more likely than Christchurch residents to evacuate immediately the building in which they were situated. There were relatively small correlations between immediate behavioural responses and demographic characteristics, earthquake experience, and physical, social, or household context.

Keywords

Natural Disasters; Risk Perception; Earthquakes; Social Context; Emotions; Christchurch (n.z.); Cross‚Äênational Research; Cross-national Research; Emotional Response; Protective Action; Disaster Victims Speak; Risk; Preparedness; Evacuation; Hazard

Rural Households’ Perceptions and Behavior Expectations in Response to Seismic Hazard in Sichuan, China

Hua, Chunlin; Huang, Shih-Kai; Lindell, Michael K.; Yu, Chin-Hsien. (2020). Rural Households’ Perceptions and Behavior Expectations in Response to Seismic Hazard in Sichuan, China. Safety Science, 125.

View Publication

Abstract

This study analyzed data from 663 rural households in the city of Jiangyou, Sichuan, China to examine the correlations of expectations of taking nine indoor seismic hazard response actions to a hypothetical earthquake with preparedness efforts, risk perceptions, and information reliance. The results indicate that respondents expect to rely on TV and local authorities as their principal sources of earthquake information. Respondents have greater expectations of infrastructure disruptions than property damage and casualties. In addition, they have greater expectations of taking some alternative actions, such as running outside of the building and helping others, than recommended in-place protective actions such as drop, cover, and hold. However, some erroneous actions, such as protecting property and ignoring the threat, are the least likely. Furthermore, regression analyses indicated that risk perceptions, together with some demographic characteristics and earthquake experience, are significant predictors of recommended in-place protective actions and helping others, whereas evacuation is related to higher risk perceptions. Unsurprisingly, respondents having previous seismic damage experience tend to be concerned about property protection and, similarly, those having fewer years of education are more likely to ignore the threat. This study also found that residents expect to rely on different channels to receive information before and after an earthquake. Nonetheless, respondents expect to engage in similar patterns of behavior during and after an earthquake. The results of this study indicate a need for greater dissemination of earthquake information in such rural areas to increase residents' risk perceptions and, in turn, understanding of appropriate emergency responses.

Keywords

Seismic Response; Risk Perception; Households; Sensory Perception; Property Damage; Sichuan Sheng (china); Information Reliance; Protective Actions; Risk Perceptions; Seismic Hazard; Climate-change; Hurricane Evacuation; Earthquake; Preparedness; Adjustment; Education; Injuries; Communication; Intentions

Maximizing the Sustainability of Integrated Housing Recovery Efforts

El-Anwar, Omar; El-Rayes, Khaled; Elnashai, Amr S. (2010). Maximizing the Sustainability of Integrated Housing Recovery Efforts. Journal Of Construction Engineering And Management, 136(7), 794 – 802.

View Publication

Abstract

The large-scale and catastrophic impacts of Hurricanes Katrina and Rita in 2005 challenged the efficacy of traditional postdisaster temporary housing methods. To address these challenges, the U.S. Congress appropriated $400 million to the Department of Homeland Security to support alternative housing pilot programs, which encourage innovative housing solutions that will facilitate sustainable and permanent affordable housing in addition to serving as temporary housing. Facilitating and maximizing the sustainability of postdisaster alternative housing is an important objective that has significant social, economic, and environmental impacts. This paper presents the development of a novel optimization model that is capable of (1) evaluating the sustainability of integrated housing recovery efforts under the alternative housing pilot program and (2) identifying the housing projects that maximize sustainability. An application example is analyzed to demonstrate the use of the developed model and its unique capabilities in maximizing the sustainability of integrated housing recovery efforts after natural disasters.

Keywords

Northridge Earthquake; United-states; Disasters; Optimization; Postdisaster Alternative Housing; Sustainability; Housing Recovery

Understanding the Motivations of Coastal Residents to Voluntarily Purchase Federal Flood Insurance

Brody, Samuel D.; Highfield, Wesley E.; Wilson, Morgan; Lindell, Michael K.; Blessing, Russell. (2017). Understanding the Motivations of Coastal Residents to Voluntarily Purchase Federal Flood Insurance. Journal Of Risk Research, 20(6), 760 – 775.

View Publication

Abstract

Federally-backed flood insurance is the primary mechanism by which residents in the United States (US) prepare for and recover from floods. While there is a growing literature on the general uptake of flood insurance, little work has been done to address the factors motivating residents to voluntarily buy and maintain federally-based insurance policies. We address this issue by conducting a survey of coastal residents in four localities in Texas and Florida. Based on survey responses, we quantitatively examine the factors influencing whether residents located outside of the 100-year floodplain obtain insurance policies when it is not required. Using two-sample t-tests and binary logistic regression analysis to control for multiple contextual and psychological variables, we statistically isolate the factors contributing most to the decision to purchase insurance. Our findings indicate that a resident located outside the 100-year floodplain who has voluntarily purchased federal flood insurance can be characterized, on average, as more highly educated, living in relatively expensive homes, and a long-time resident who thinks about flood hazard relatively infrequently but who, nonetheless, thinks flood insurance is relatively affordable. Unexpectedly, the physical proximity of a respondent to flood hazard areas makes little or no discernible difference in the decision to obtain flood insurance.

Keywords

Action Decision-model; Hazard Adjustments; Risk; Perceptions; Adoption; Florida; Losses; Determinants; Preferences; Responses; Insurance; Floodplain; Purchase Decision; Texas

Comparative Environmental Analysis of Seismic Damage in Buildings

Huang, M.; Simonen, K. (2020). Comparative Environmental Analysis of Seismic Damage in Buildings. Journal Of Structural Engineering, 146(2).

View Publication

Abstract

In studying the environmental impacts of buildings, earthquake hazards are rarely considered, but their environmental impacts can be significant. This case study paper demonstrates how the US Federal Emergency Management Agency's Performance Assessment Calculation Tool (PACT) can be used to analyze the environmental impacts of buildings using probabilistic seismic hazard assessment. PACT was used to evaluate 10 case study buildings that varied by five types of lateral systems and two risk categories. For each building, PACT generated 1,000 realizations at five earthquake intensities. The resulting environmental impacts were analyzed according to their distribution, median, and average values, and the differences among building component types, risk categories, and lateral force-resisting systems were explored. In this study, building components that were categorized under Exterior Enclosures, Interior Finishes, and Heating, Ventilation, and Air-Conditioning (HVAC) produced notably higher environmental impacts in response to seismic damage, and their vulnerability to displacement- or acceleration-induced damage could be attributed to the characteristics of the lateral systems. Although these observations are notable, they should not be taken as universally applicable to all buildings. Instead, these findings exemplify how the environmental impact results from PACT can be analyzed and interpreted to address both the seismic and environmental aspects of building design. (C) 2019 American Society of Civil Engineers.

Keywords

Impact

Enabling The Development Of Base Domain Ontology Through Extraction Of Knowledge From Engineering Domain Handbooks

Hsieh, Shang-hsien; Lin, Hsien-tang; Chi, Nai-wen; Chou, Kuang-wu; Lin, Ken-yu. (2011). Enabling The Development Of Base Domain Ontology Through Extraction Of Knowledge From Engineering Domain Handbooks. Advanced Engineering Informatics, 25(2), 288 – 296.

View Publication

Abstract

Domain ontology, encompassing both concepts and instances, along with their relations and properties, is a new medium for the storage and propagation of domain specific knowledge. A significant problem remains the effort which must be expended during ontology construction. This involves collecting the domain-related vocabularies, developing the domain concept hierarchy, and defining the properties of each concept and the relationships between concepts. Recently several engineering handbooks have described detailed domain knowledge by organizing the knowledge into categories, sections, and chapters with indices in the appendix. This paper proposes the extraction of concepts, instances, and relationships from a handbook of a specific domain to quickly construct base domain ontology as a good starting point for expediting the development process of more comprehensive domain ontology. The extracted information can also be reorganized and converted into web ontology language format to represent the base domain ontology. The generation of a base domain ontology from an Earthquake Engineering Handbook is used to illustrate the proposed approach. In addition, quality evaluation of the extracted base ontology is performed and discussed. (C) 2010 Elsevier Ltd. All rights reserved.

Keywords

Ontology; Earthquake Engineering; World Wide Web; Theory Of Knowledge; Vocabulary; Programming Languages; Domain Handbook; Domain Ontology; Owl; Web Ontology Language; Knowledge Representation Languages; Ontologies (artificial Intelligence); Base Domain Ontology; Knowledge Extraction; Engineering Domain Handbooks; Domain Specific Knowledge Storage; Domain Specific Knowledge Propagation; Domain-related Vocabularies; Domain Concept Hierarchy; Development Process; Web Ontology Language Format; Earthquake Engineering Handbook; Semantic Web; Management; Design

Warning Triggers in Environmental Hazards: Who Should Be Warned to Do What and When?

Cova, Thomas J.; Dennison, Philip E.; Li, Dapeng; Drews, Frank A.; Siebeneck, Laura K.; Lindell, Michael K. (2017). Warning Triggers in Environmental Hazards: Who Should Be Warned to Do What and When? Risk Analysis, 37(4), 601 – 611.

View Publication

Abstract

Determining the most effective public warnings to issue during a hazardous environmental event is a complex problem. Three primary questions need to be answered: Who should take protective action? What is the best action? and When should this action be initiated? Warning triggers provide a proactive means for emergency managers to simultaneously answer these questions by recommending that a target group take a specified protective action if a preset environmental trigger condition occurs (e.g., warn a community to evacuate if a wildfire crosses a proximal ridgeline). Triggers are used to warn the public across a wide variety of environmental hazards, and an improved understanding of their nature and role promises to: (1) advance protective action theory by unifying the natural, built, and social themes in hazards research into one framework, (2) reveal important information about emergency managers' risk perception, situational awareness, and threat assessment regarding threat behavior and public response, and (3) advance spatiotemporal models for representing the geography and timing of disaster warning and response (i.e., a coupled natural-built-social system). We provide an overview and research agenda designed to advance our understanding and modeling of warning triggers.

Keywords

Situation Awareness; Evacuation; Model; Management; Simulation; Decisions; Vehicles; Support; Systems; Hazards; Protective Actions; Warning Systems; Emergency Communications Systems; Disasters; Emergency Preparedness; Environmental Hazards; Environmental Conditions; Public Concern; Risk Perception; Emergency Management; Situational Awareness; Information Management; Geography; Emergency Warning Programs; Wildfires; Action; Risk Assessment; Timing; Warnings

Community Response to Hurricane Threat: Estimates of Household Evacuation Preparation Time Distributions

Lindell, Michael K.; Sorensen, John H.; Baker, Earl J.; Lehman, William P. (2020). Community Response to Hurricane Threat: Estimates of Household Evacuation Preparation Time Distributions. Transportation Research Part D-transport And Environment, 85.

View Publication

Abstract

Household evacuation preparation time distributions are essential when computing evacuation time estimates (ETEs) for hurricanes with late intensification or late changing tracks. Although evacuation preparation times have been assessed by expected task completion times, actual task completion times, and departure delays, it is unknown if these methods produce similar results. Consequently, this study compares data from one survey assessing expected task completion times, three surveys assessing actual task completion times, and three surveys assessing departure delays after receiving a warning. In addition, this study seeks to identify variables that predict household evacuation preparation times. These analyses show that the three methods of assessing evacuation preparation times produce results that are somewhat different, but the differences have plausible explanations. Household evacuation preparation times are poorly predicted by demographic variables, but are better predicted by variables that predict evacuation decisions-perceived storm characteristics, expected personal impacts, and evacuation facilitators.

Keywords

Travel Demand Model; Decision-making; Communication; Prediction; Simulation; Hurricane Evacuation Models; Preparation Time Distributions; Mobilization Time Distributions; Departure Delay Time Distributions; Social Milling